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Abstract. Semantic annotations describe the semantics of artifacts like
documents, web-pages, schemas, or web-services with concepts of a ref-
erence ontology. Application interoperability, semantic query processing,
semantic web services, etc. rely on a such a description of the semantics.
Semantic annotations need to be created and maintained. We present a
technique to detect logical errors in semantic annotations and provide in-
formation for their repair. In semantically rich ontology formalisms such
as OWL-DL the identification of the cause of logical errors can be a com-
plex task. We analyze how the underlying annotation method influences
the types of invalidations and propose efficient algorithms to detect, lo-
calize and explain different types of logical invalidations in annotations.

Keywords: Semantic annotation, ontology evolution, annotation main-
tenance, logical invalidation

1 Introduction

Semantic annotations are used to attach semantics to various kinds of artifacts
like documents, web-pages, schemas, or web-services. Semantic annotations are
used in information systems engineering in various ways: To enable semantic in-
teroperability of information systems, to generate transformations of documents
between heterogenous information systems, to support correct schema integra-
tion, selection and composition of web services, etc. - see e.g. [10, 15, 16]. In
this paper we focus on annotations on the schema level rather than on the in-
stance level (e.g. RDF [9]). Schema level annotations are better suited for high
volume data because all documents that are instances of an annotated schema
can be interpreted with the reference ontology. XML-Schemas can be annotated
according to the W3C Recommendation Semantic Annotations for WSDL and
XML Schema (SAWSDL) [6] which provides two different methods: declarative
annotations with model references that attach concepts of a reference ontology
to elements or types of a schema, as well as references to lifting and lowering
mappings (scripts) that actually transform XML-instance data to individuals of
the reference ontology. In [7] we proposed an annotation technique which is fully
declarative but allows to express semantics more precisely than mere concept
references.

The aim of this work is to support the process of annotating schemas and of
maintaining annotations that got invalid after ontology evolution [3]. We do not



assume that invalid annotations can be corrected automatically as this typically
requires real world domain knowledge. Annotations need to be validated during
the creation or maintenance process on three levels:

1. Structure: The referenced concepts or properties have to exist in the reference
ontology and satisfy basic structural constraints [7].

2. Logics: The representation of a structurally valid annotation as a concept
must not contradict with the reference ontology.

3. Semantics: The annotations correctly describe the real-world domain. We
define semantic invalidations as changes of the ontology that have conse-
quences on the interpretation of instance data of annotated schemas. This
is different from logical invalidation. We have presented an approach for the
detection of semantic invalidations that is based on the explicit definition of
change-dependencies in [8].

The contribution of this paper is an in depth analysis of logical invalidations,
resulting in algorithms and methods to (a) discover whether an annotation path
expressions is logically invalid, (b) which part of an annotation path expression
is invalid, and (c) the cause of this invalidation. This information should enable
annotators to correct the annotation.
In the following we discuss semantic annotations of XML-schemas. However,
the annotation method and the algorithms for validation of the annotations are
not restricted to XML Schemas, but can as well be used for all other types of
artifacts like web services, relational schemas, etc.

2 Annotation Method

We will briefly introduce the declarative annotation method we proposed in [7].
The goal of the annotation method is to describe the annotated element in much
more detail than the direct annotation with existing concepts of the reference
ontology while being declarative in contrast to rather procedural lifting/lower-
ing mappings. The proposed annotation method has two representations: Path
expressions over concepts and properties of an ontology that are directly used
to annotate XML-Schema elements or types in form of SAWSDL [6] model ref-
erences. These annotation paths are translated to complex OWL formulas rep-
resenting the annotation in the ontology. We first define the structure of an
annotation path expression and then show how a path is translated to an OWL
formula. For details we refer to [7].

Definition 1. Annotation Path: An annotation path p is a sequence of steps.
Each step is a triple s=(uri, type, res), where s.uri is some URI of an element
of the reference ontology O; the type s.type defines the type of ontology element
that is addressed by s.uri. It can be cs for a concept-step, op for an object-
property step or dp for a datatype-property step.
Only concept-steps may have a set of restrictions s.res. Each restriction r ∈
s.res can either be an individual or a restricting path expression. Such a path



expression adds a restriction to the corresponding step s. If s.res contains mul-
tiple restrictions they all apply to the corresponding step s (logical and). Each
annotation path p ∈ P has a type ∈ {ConceptAnnotation, DataTypePropertyAn-
notation }. The type is defined by the last step.

A structurally valid annotation path expression must comply with the fol-
lowing restrictions:

– All steps refer to existing URIs of the ontology.
– The first step must refer to a concept.
– The last step must refer to a concept or to a datatype property.
– A step that refers to an object property can only occur between two concept

steps.
– A step that refers to a concept must be followed by an object- or datatype-

property step or nothing.
– A step that refers to a datatype property can only exist as the last step.
– Only steps that refer to concepts may have additional restrictions.

Structurally valid annotation path expressions can automatically be trans-
formed to OWL [11] concepts that extend the reference ontology. The following
example shows an annotation path and its corresponding concept in the refer-
ence ontology.
The annotation path p = Order/billTo/Buyer[Mr Smith]/hasCountry/Country
is used to annotate a country element for some XML-Schema for order docu-
ments. It describes a subconcept of a country with an inverse relation hasCountry
to some Buyer that has an inverse billTo relation to some Order. The buyer
has a restriction to state that Buyer is a specific buyer with the name/URI Mr.
Smith. The corresponding class definition p.c is shown in listing 1.1.

1 C l a s s : Order/ b i l lTo /Buyer [ Mr Smith ] / hasCountry/Country
2 Equ iva l entC la s s e s (
3 ConceptAnnotation and Country and inv
4 ( hasCountry ) some
5 (Buyer and {Mr Smith} and inv ( b i l lTo ) some (Order )
6 ) )

Listing 1.1. Representation of an annotation path in OWL

Structurally valid annotation path expression can be transformed to OWL
concepts with the following mappings:

– Concept-steps are directly mapped to OWL-concepts.
– Restrictions on concept-steps are mapped to enumerated classes or restric-

tions over the corresponding concept.
– Object-property-steps are mapped to inverse OWL some values from restric-

tions between concepts on that specific property.
– Datatype-property-steps are mapped to OWL some values from restrictions

of the last concept step on that specific datatype-property.



The annotation method allows different types of annotations, that we now
define in order to describe the possible invalidations for each type in the follow-
ing sections. Simple concept annotations consists of only one concept. Simple
datatype annotations consists of only one concept and one datatype property.
3-step concept annotations consists of a concept, an object-property and another
concept. General annotations consist of more than 3 steps.

3 Logical Invalidation of Annotation Paths

An annotation path is logically invalid, if the corresponding annotation concept
is not satisfiable in the reference ontology. Thus, the detection of logically invalid
annotations is a classical reasoning task. The root concept of OWL is Thing. Any
subconcept of this concept is satisfiable in the ontology. A satisfiable concept can
contain individuals. Concepts that are not subclasses of Thing are not satisfiable
and are subclasses of the concept Nothing, which is the complement of Thing.

Definition 2. Logical Invalidation of an Annotation: A structurally valid an-
notation path p is logically invalid if the corresponding annotation concept p.c
is unsatisfiable in the reference Ontology O. O

⋃
p.c→ p.c 6⊑ Thing

Why can’t we use standard tools for validation and repair such as [12] or [14]?
First, we want to determine which steps of the annotation path are responsible
for the invalidation rather than determining a set of axioms of the (extended)
ontology causing the invalidation. Second, repairs can only change annotation
paths, and not axioms of the ontology. For debugging annotations we have the
following requirements:

– The ontology is assumed to be consistent and therefore, free of contradictions
before the annotation concept is added.

– The structure of the annotation concepts is strictly defined by the annotation
method.

– Repairs can change annotation path expression but not the ontology.
– In case of annotation maintenance we require that the annotation concept

was valid in the previous ontology version.

Therefore, we need to find the error in the steps of the annotations rather
than in their OWL representation. This limits the usefulness of standard OWL
debugging methods (see section 6). If an ontology evolves, annotation mainte-
nance means to identify those annotation paths which became logically invalid
due to the changes in the ontology and to identify those steps in the annotation
path which cause the invalidation. An expert then can repair the invalid anno-
tation paths efficiently using the information about the cause of the invalidation.

In OWL logical contradictions boil down to a limited set of contradictions
[12]: Atomic - An individual belongs to a class and its complement. Cardi-

nality - An individual has a max cardinality restriction but is related to more



distinct individuals. Datatype - A literal value violates the (global or local)
range restriction of a datatype property.
These clashes also apply for unsatisfiable classes. Thus, for example a class is
unsatisfiable if it is defined as an intersection with its complement or if it has
contradicting cardinality- or datatype-restrictions. Of course such invalidations
can be produced by non-local effects. In the next sections we discuss how the
different annotation types can be logically invalid.

3.1 Invalidation of Simple Concept Annotations

A simple concept annotation consists of only one concept. Thus, a concept with
the name prefix + conceptUri is generated, where prefix is some unique iden-
tifier that is not used in the ontology O, with the equivalent class definition
(ConceptAnnotation and conceptUri).

Theorem 1. A simple concept annotation that is structurally valid is also log-
ically valid.

Proof. We require that all concepts of the reference ontology are satisfiable.
Thus, there is only one case, where the union of ConceptAnnotation and con-
ceptURI can result in an unsatisfiable concept: The class with the URI Con-
ceptAnnotation is disjoint from the concept with the URI conceptURI. This is
impossible because the primitive concept ConceptAnnotation does not exist in
the reference ontology before the annotations are added. Thus, there cannot be
an axiom in the ontology that contradicts with it.

3.2 Invalidation of Simple Datatype Annotations:

A simple datatype annotation of the form /c/datatypeProperty consists of a
concept and a restriction over some datatype-property of the form: (dataty-
peAnnotation and c and datatypeProperty some rdf:Literal).

Theorem 2. There exists no invalid simple datatype annotation that does not
violate one of the following conditions:

1. Invalid-domain: The intersection of the domain of the property with the
concept is not a subclass of OWL : Thing.
c ⊓ domain(datatypeProperty) 6⊑ Thing

2. Invalid-restriction: The intersection of the concept and the restriction
over the datatype-property is not a subclass of OWL : Thing.
c and datatypeProperty some Literal 6⊑ Thing

Proof. Obviously, case 2 of an invalidation is equivalent to the satisfiability-
check of the whole annotation concept. There is only one additional case for
an invalidation where the concept with the URI datatypeAnnotation is disjoint
from c, which is impossible in analogy to theorem 1. Thus, every logically invalid
simple datatype annotation is captured.



According to theorem 2 every simple datatype annotation that is invalid due
to an invalid-domain is also invalid due to an invalid-restriction. Thus, in order
to detect the cause of the error in more detail we need to investigate the reasons
for the invalid restriction. This can be realized by additionally checking the first
case. In addition the restriction clash is not yet atomic. In OWL there are the
following scenarios for invalid restrictions over datatype-properties:

1. The datatype of the restriction does not comply with a datatype that is
required by an existing restriction in O.

2. There is a cardinality clash between the existential restriction of the anno-
tation path and an existing restriction in O.

Theorem 3. An invalidation of a simple datatype annotation due to a conflict-
ing datatype restriction is impossible.

Proof. A contradicting datatype must be disjoint from the datatype in the ex-
istential restriction. This is impossible because every datatype is a subtype of
rdfs:literal, which is used for the existential restriction in the annotation concept.
No subtype can be disjoint from its supertype.

Cardinality clashes are possible, when there is a restriction on the class (c
⊓ datatypeProperty) of the form: datatypeProperty max n type, where type is
rdfs : Literal or any subtype of it.

3.3 Invalidation of 3-Step Concept Annotations

A 3-step concept annotation is a triple of the form concept/property/othercon-
cept. It is represented as an OWL equivalent class expression otherconcept and
inv (property) some concept. Such an expression can be invalid due to domain-
invalidation, range-invalidation and restriction-invalidation.

Definition 3. Domain-Invalidation:
An annotation triple of the form concept/Property/otherconcept is unsatisfiable
due to a domain-invalidation, iff: domain(Property) ⊓ concept 6⊑ Thing

Definition 4. Range-Invalidation
An annotation triple of the form concept/Property/otherconcept is unsatisfiable
due to a range-invalidation, iff: range(Property) ⊓ otherconcept 6⊑ Thing

Definition 5. Restriction-Invalidation:
An annotation triple of the form concept/Property/otherconcept is unsatisfi-
able due to a restriction-invalidation, iff: otherconcept ⊓ inv (Property) some
concept 6⊑ Thing

Theorem 4. There exists no invalid 3-step concept annotation that does not
introduce a domain-invalidation, range-invalidation or restriction-invalidation.



Proof. A restriction-invalidation is defined as otherconcept ⊓ inv (hasProperty)
some concept 6⊑ Thing. This is equivalent to the satisfiability requirement
for the whole annotation path because the intersection of otherconcept and
ConceptAnnotation cannot result in a clash (see proof of theorem 1). Thus,
there exists no invalid 3-step annotations that are not captured by the enumer-
ated invalidations.

While the domain or range invalidations are already atomic there can be
different causes for invalid restrictions: A restriction can be invalid because the
range of the restriction is disjoint from another allvaluesFrom restriction on
concept or it can be invalid because there is a cardinality restriction on concept
of the form property max n otherconcept. Therefore, the invalid-restriction
problem can be divided into invalid-value-restriction and invalid-cardinality-
restriction.

OWL2 allows the definition of object properties to be functional, inverse
functional, transitive, symmetric, asymmetric, reflexive, and irreflexive. Since
the existence of the object property is defined by the existential quantification
of the inverse of the property these characteristics can influence the satisfiability
of the annotation. For example, given an annotation path p = /A/hasB/B, the
path is invalid, if hasB is defined as inverse functional and B has an inverse
hasB restriction in O to some other class that is disjoint from A.
We can summarize that a 3-step concept annotation can be invalid because of the
restrictions that are formulated over the corresponding annotation concept. Def-
inition 5 is sufficient but the root cause can be found in property characteristics
or cardinality or value clashes.

4 Invalidation of General Annotations

In the last section we defined all local invalidations that can occur in annota-
tions that consists of 3 steps. A general annotation consists of a sequence of
3-step concept annotations called triples. The last step can be a 3-step concept
annotation or a simple datatype annotation. We will first show that all local
invalidation types also apply to general concept annotations and then discuss
additional kinds of invalidations that are only possible in general annotations.

4.1 Invalidation of General Annotation due to Local Invalidations

Definition 6. Local-Invalidations: The invalidation types domain-invalidation
(see def. 3), range-invalidation (see def. 4) and restriction-invalidation (see def.
5) are local invalidations, that are defined in the context of a triple.

Theorem 5. A locally invalid 3-step annotation cannot get valid, when it occurs
as a triple in a general annotation path.

Proof. A general annotation path has the form: /c1/p2/c3/.../cn−2/pn1
/cn/. We

now assume that there exits a triple Cinv = cx/py/cz, in the path that is invalid,



when it is inspected separately (local invalidation), but the entire annotation
concept ... c

−2/p−1/cx/py/cz/p1/c2 ... is valid. This implies that either cx or cz
were implicitly changed to classes that are not still causing local invalidations in
Cinv. When the triple Cinv is added to the annotation concept this is realized
by an expression of the form:
... c2 and (inv) p1 some (cz and inv (py) some (cx and p

−1 some ...
Thus, zx is implicitly replaced with an intersection of zx and (p1 some ...) that
we now call zx2. cz gets implicitly replaced with cz and (range (p1) that we
now call cz2. In order to achieve a satisfiable triple Cinv in p, cx2 must not be a
subclass of cx or cz2 must not be a subclass of cz. This is a contradiction because
they are logically subclasses of cx and cz.

Theorem 6. A general concept annotation that contains an invalid triple is
itself logically invalid.

Proof. A general concept annotation path consists of triples: t1/t2/t3/.../tn. We
will now show via induction that as soon as one of its triples is unsatisfiable, the
whole annotation concept is unsatisfiable. Beginning with an annotation p1 that
only consists of tn. If tn is itself unsatisfiable, then the whole path cannot be
satisfiable because it is represented as a subclass of tn in p1.c. We now assume
that p1 is satisfiable and we add tn−1, which is supposed to be unsatisfiable. The
addition renders the whole annotation path unsatisfiable because the connection
between pn and tn−1 is represented in form of an existential restriction. This step
can be repeated by adding an unsatisfiable triple to a longer and longer valid
path, until t1 is reached. Therefore, if any triple of a general concept annotation
is locally invalid the whole annotation concept must be logically invalid.

As a conclusion all previously discussed local invalidations also apply to gen-
eral annotations. Additionally there are invalidations that only occur in general
annotations: direct-triple-disjointness and arbitrary non local invalidations.

4.2 Direct-Triple-Disjointness

One kind of invalidation that does not exist for 3-step annotations can be caused
by the concatenation of two annotation triples. This means the concept that is
implicitly created by the first triple is disjoint from the concept which is required
by the second triple. An example for such a scenario is shown in Figure 1. The
corresponding reference ontology is shown in listing 1.2.

1 Order isA Document
2 Invo i c e isA Document
3 D i s j o i n t (Order , I nvo i c e )
4 Domain( SendsOrder ) = Customer
5 Range ( SendsOrder ) = Order
6 Domain( hasInvoiceNumber ) = Invo i c e
7 Range ( hasInvoiceNumber ) = InvoiceNumber

Listing 1.2. Example ontology for direct-triple-disjointness invalidations



Customer/sendsOrder/Document/hasInvoiceNumber/InvoiceNumber

Fig. 1. Example of direct-triple-disjointness

In Customer/sendsOrder/Document/hasInvoiceNumber/InvoiceNumber each
triple is valid individually, but the combination of the triples leads to an unsatis-
fiable concept. The reason for this invalidation is that the subclass of Document
that is produced by the range of sendsOrder in the first triple is disjoint from the
subclass of Document that is produced by the domain of hasInvoiceNumber in
the second triple.

Theorem 7. Direct-Triple-Disjointness: An annotation path p = /t1/.../tn/ is
invalid, if there exist two logically valid neighbored triples tn = cn/pn/cm and
tm = cm/pm/cm+1, where range(pn) ⊓ restriction(cn, pn) ⊓ domain(pm) ⊓ cm
6⊑ Thing.

Proof. The intersection class range(pn) ⊓ restriction(cn, pn) ⊓ domain(pm) ⊓
cm describes the implicit concept between two annotation triples, that is re-
sponsible for the concatenation of the triples. If this intersection concept is
unsatisfiable any class with an existential restriction for this concept becomes
unsatisfiable.

4.3 Non-Local Invalidations

Local- and direct-triple-disjointness invalidations can be located precisely. That
means the step in the path that causes the invalidation can be annotated with
the type of the clash and the reason for the invalidation. This can be valuable
information for a user who has to repair the annotation path.
In case of general annotation paths which consist of two or more triples addi-
tional invalidations can occur which are not necessarily induced by neighboring
triples. We will now first present an example in listing 1.3 and then define the
problem in general.
The example contains the annotation concept MyAnnotation that represents
the path BusinessCustomer/sends/Order/has/Itemlist/contains/PrivateProduct
/hasPrice/Price. The annotation concept is free of local- or direct-triple- disjoint-
ness invalidations. Nevertheless, it is logically invalid because according to the
ontology, business customers may only send business orders and business orders
may only contain business products. Business products are disjoint from private
products. This renders the whole annotation path unsatisfiable. Now our goal
is to find the steps in the path that are responsible for the invalidation. In this
case the steps that are responsible for the clash are:
BusinessCustomer/sends/Order/has/Itemlist/contains/PrivateProduct.



1 Class ( BusinessCustomer )
2 Class ( Order ) , Class ( BusinessOrder ) , Class ( PrivateOrder )
3 Class ( I t em l i s t )
4 Class ( PrivateProduct ) , Class ( BusinessProduct )
5 Class ( Pr i c e )
6 Class ( ClassMyAnnotation )
7 ObjectProperty ( sends )
8 ObjectProperty ( conta in s )
9 ObjectProperty ( has )

10 ObjectProperty ( hasPr i ce )
11 Equiva l entClas s ( BusinessCustomer ,
12 BusinessCustomer and sends only BusinessOrder )
13 Equiva l entClas s ( BusinessOrder , BusinessOrder and has only
14 ( I t em l i s t and conta in s only BusinessProduct ) )
15 Equiva l entClas s (MyAnnotation , Pr i c e and inv ( hasPr i ce ) some
16 ( PrivateProduct and inv ( conta in s ) some
17 ( I t em l i s t and inv ( has ) some
18 (Order and inv
19 ( sends ) some BusinessCustomer ) ) ) )
20 d i s j o i n t ( BusinessOrder , Pr ivateOrder )
21 d i s j o i n t ( BusinessProduct , Pr ivateProduct )

Listing 1.3. A non local invalidation

To define such invalidations we first introduce a normalized representation
form of an annotation concept.

Definition 7. Normalized Annotation Concept
An annotation path p = /c1/p2/c3/...cn−2/pn−1/cn/ is represented as an anno-
tation concept p.c = cn and inv (pn−1) some (cn−2 ... and inv (p2 some c1) ...).
This annotation concept uses nested anonymous concepts. In contrast a normal-
ized annotation concept of p.c uses named concepts of the form:
p.c = Ac0 = cn and inv (pn−1) some Ac1
Ac1 = cn−2 and inv (pn−3) some Ac2
Ac2 = cn−4 and inv (pn−5) some Ac3
...
Acj = c3 and inv (p2) some c1

Definition 8. Chain of Restrictions of an Annotation Path.
A chain of restrictions of a normalized annotation concept p.c of an annotation
path p is any set of succeeding named concepts Acx .. Acx+n of p.c, where n ≥
1 ∧ x ≥ 0 ∧ x+ n < |p.c| − 1.

Theorem 8. Non Local Invalidations: When a path is invalid and it is free of
local and direct-triple-disjointness invalidations, then there must exist at least
one sub-path of two or more triples that conflicts with the ontology.

Proof-Sketch: Given a logically invalid annotation path pinv that is free
of local- and direct-triple-disjointness invalidations of m triples of the form



/t1/../tm. From the absence of local invalidations follows that each triple t ∈
pinv is valid separately. From the absence of intra-triple-disjointness invalida-
tions follows that the intermediate concept that is build by every neighbored
pair of triples is satisfiable. Thus, the unsatisfiability of pinv cannot have a local
reason. Non-local invalidations are induced by chains of restrictions that conflict
with the reference ontology. Each chain of restriction of an annotation path can
also be represented as a sub-path of pinv.

Definition 9. Minimal Invalid Sub-path (MIS): An invalid sub-path ps that
is free of local or triple disjointness invalidations of an annotation path p is
minimal, iff the removal of the first or last triple of ps yields a satisfiable concept
of ps.concept in O.

We will now discuss which OWL constructs can cause non local invalidations.

– Chain of Restrictions: There is is a chain of restrictions defined on con-
cepts in O that produces a clash with the chain of restrictions of the MIS.
The chain can be created analogues to our annotation concept or it can be
realized with named concepts. The definition may be defined inverse as our
annotation concepts or non-inverse. An example was shown in listing 1.3.

– Transitive Properties: Transitive properties may also result in an invalida-
tion of an annotation path. An example is shown in listing 1.4. The annota-
tion concept of the annotation path A/has/B/has/C/has/D is unsatisfiable
due to the transitivity of the property has, which has the consequence that
D has an inverse property definition for has to B and A implicitly. Because
D may only have an inverse relation has to C the annotation concept is
unsatisfiable.

– Property Chains: A property chain has the form p1 o p2 → p3. It ex-
presses that if there is a chain where some individual i1 has a property p1
to another individual i2 and this individual has a property p2 to an individ-
ual i3, then the individual i1 has an assertion for the property p3 to i3. Of
course the chain can have an arbitrary length. This can be seen as a flexible
case of transitivity, where the properties in the chain do not need to have an
equivalent or sub-property relation in order to produce a transitive chain.
Thus, property chains can also be used to produce non-local invalidations.

1 Class (A) , Class (B) , Class (C) , Class (D)
2 Class ( ClassMyAnnotation )
3 ObjectProperty ( has )
4 t r a n s i t i v e ( has )
5 Equ iva lentClass (D and inv ( has ) only C)
6 Equiva lentClass (MyAnnotation , D and inv ( has )
7 some (C and inv ( has ) some (B and inv ( has ) some A) ) )
8 d i s j o i n t (C,B)

Listing 1.4. Example ontology for inter-triple invalidations by transitive properties



4.4 An Algorithm for the Detection of a Minimal Invalid Sub-Path

An algorithm for the detection of a minimal invalid sub-path of an annotation
path p can be based on a structural search over conflicting axioms in the reference
ontology. The last section has shown that such non local conflicts can occur
due to many different OWL constructs. Of course a MIS can be the result
of a combination of the described causes, which makes an exhaustive search
even more complex. The efficiency of such an algorithm is further reduced by
the fact that reasoning over sub-, super-, and equivalent-properties and -classes
is required. In addition, for such a detection method the first and last triple
of a sub-path are not known in advance. This makes another approach that
directly operates on definition 9 of a minimal invalid sub-path more efficient.
The corresponding algorithm is shown in in listing 1.5. The algorithm takes an
invalid path p that is free of local and direct-triple disjointness invalidations as
input and returns the index of the start and end triple of the detected MIS.

1 ( int , i n t ) getMinimalInval idSubpath (p ,O) {
2 r = p . t r ip l eCount ()−1;
3 // Find the r i g h t border o f the MIS
4 whi l e (O. u n s a t i s f i a b l e ( createSubPath (p , 1 , r ) )
5 r−−;
6 }
7 l = 2 ;
8 // Find the l e f t border o f the MIS
9 whi l e (O. u n s a t i s f i a b l e ( createSubPath (p , l , r +1))

10 l++;
11 }
12 return ( l −1, r+1)
13 }

Listing 1.5. An algorithm for the detection of the minimal invalid sub-path

The algorithm uses some helper methods. The method p.tripleCount() re-
turns the number of triples of p, createSubPath(p,l,r) returns the OWL expres-
sion of a sub-path of p that starts at index l and ends at index r. The methods
assumes that the leftmost triple of p has the index 1 and the last triple of p has
the index p.tripleCount(). The method O.unsatisfiable(owlexp) returns true, if
the OWL expression owlexp is unsatisfiable in the ontology O.
The first loop is used to find the right boundary of a MIS. This is realized by
sequentially creating a sub-path of p that begins at position 1 and end at posi-
tion r, where r is decremented in each iteration. The loop terminates as soon as
the created sub-path gets satisfiable. Therefore, the right boundary of the MIS
must be at position r + 1. The reason for this is that analogues to theorem 6,
there can exist no complete MIS before position r. Otherwise r cannot be sat-
isfiable. After the right boundary was found it is guaranteed that the sub-path
between 1 and r + 1 is invalid. However, it is not yet sure that it is minimal.
Therefore, the left boundary of the MIS needs to be found. This is realized by
creating a sub-path that begins at position l and ends at position r + 1, where
l starts at 2 and it is incremented in each iteration. As soon as such a sub-path



gets satisfiable the left boundary of the MIS has been found at position l − 1.
The detected MIS complies with definition 9 because both iterations guarantee
that the removal of the first or last triple of the MIS result in a valid sub-path
of p. The algorithm guarantees that is can find one MIS. If a path contains mul-
tiple MIS, we propose to remove them iteratively with the help of the proposed
algorithm.

Theorem 9. When the algorithm of listing 1.5 is used on a path that is free
of local and direct-triple-disjointness invalidations that contains multiple MIS,
then the leftmost inner MIS is detected.

Proof-Sketch: Given an annotation path p = /t1/t2/.../tn. In the first itera-
tion sub-paths starting at t1 of p are created. The unsatisfiable sub-path with
the minimum number of triples is considered to be a MIS-candidate. According
to theorem 6 there can exist no other complete MIS in the path that ends be-
fore the MIS candidate. It is only possible that there exists another MIS that
starts before and ends after or at the same position as the detected one. In the
next loop the minimality of the MIS is guaranteed by chopping elements from
the start. As a consequence the algorithm detects the leftmost inner-MIS.

5 Implementation Considerations

In this paper we have defined error-types on annotation paths. The goal is to
tell the user, which steps of a path are responsible for the invalidation including
an explanation of the type of invalidation. The detection of most invalidation
types is straight forward. It is just a query to the reasoner that is equivalent
to the definition of the specific invalidation type. Non local invalidations can be
tracked by the proposed MIS algorithm. However, testing each triple of every
invalid annotation path can be an expensive task. Therefore, we will briefly
discuss properties of annotation path that can be used to enormously reduce the
number of queries to the reasoner. In a typical scenario there is a set of valid
annotations V and a set of invalid annotations I. Both sets are a direct result of
the classification of the reference ontology with the added annotation concepts.
We now define properties that hold between the elements of V and I.

Theorem 10. Globally-valid path-postfix: Given a set of valid annotations V
and one invalid annotation i. If there exists an annotation v in V with a common
postfix (ending with the same sequence of triples) with i, then the corresponding
sub-path of i cannot introduce local or direct-triple-disjointness invalidations.

Proof. No annotation path ∈ V can contain local or direct-triple-disjointness
invalidations. Otherwise it would not be satisfiable. If a path is satisfiable also
every postfix of it must be satisfiable due to the monotonicity of OWL. An an-
notation concept is a specialization of the last concept-step. The longer a path
is, the more specific is the annotation concept. When there exists an annotation
path v ∈ V which has the same postfix f as i, then i.concept is a more spe-
cific concept than f.concept. Thus, the additional specialization must induce the
error. It is represented by the prefix of i which does not match f .



Theorem 11. Globally-valid-triples: A triple that is an element of a path ∈ V
cannot produce a local invalidation when it is used in a path in I.

Proof. The proof of theorem 11 is a direct consequence of theorem 6. Any triple
that is an element of a valid path cannot be logically invalid because otherwise
the path would be invalid.

These two properties of a globally valid postfix and triples can be used to
find local invalidations or intra-triple-disjointness invalidations very efficiently.
As a first step the longest common postfix from i and the annotations in V can
be detected. If such a postfix is found it is guaranteed that the corresponding
postfix in i cannot contain local or direct-triple disjointness invalidations. In ad-
dition all triples in all paths of V can be considered as locally valid triples. Thus,
if they occur in i they do not need to be tested for local invalidations.
Finally, when the annotation concepts are represented in form of normalized
concepts (see definition 7) in the ontology, it is guaranteed that all triples that
correspond to satisfiable named concepts are locally valid and that no direct-
triple-disjointness invalidations can exist between succeeding triples, that corre-
spond to satisfiable named concepts in the normalized representation.
All these considerations can lead to a major speedup for the detection of in-
validations because triples and combinations of triples that are known to be
valid do not need to be checked for specific error-types (domain-invalidation,
range-invalidation, ...) and in order to guarantee that the input path of the
MIS algorithm is free of local or direct triple-disjointness invalidations, only
the potentially invalid triples and combinations of triples need to be checked.

6 Related Work

The basis of this research is a declarative annotation method for XML-Schema
published in [7]. The annotation method has two representations: path expres-
sions and complex OWL formulas. Only the path expressions can be changed by
the annotators. Therefore, we have proposed methods to track errors in annota-
tion paths. In order to find errors in the corresponding complex OWL formula
also general ontology debugging solutions could be used. However, preliminary
experiments with the well known OWL1 tool Swoop [12] have shown that Swoop
was not able to detect the root-cause of many non local invalidations that only
used OWL1 language constructs. In this case the concept was detected to be
invalid but no explanation could be generated. When explanations could be gen-
erated it was very tedious for the annotator to actually discover which elements
in the path were responsible for the problem. The integrated repair tool of Swoop
could not help either. In contrast our method can precisely track, which elements
in the path are responsible for the invalidation and it is a reasoner-independent
black-box approach. In addition we have defined error-types that indicate the
reason for the invalidation with respect to the steps of the path.
A fundamental publication in the field of ontology debugging is [14]. It introduces
the term of minimal unsatisfiable sub Tboxes (MUPS). A MUPS is a minmal



set of axioms that is responsible for a concept to be unsatisfiable. When one
axiom gets removed from the MUPS the concept gets satisfiable unless there are
additional MUPS for the concept. This definition is somehow analogues to our
definition of the minimal invalid sub-path. In [5] an optimized black box algo-
rithm for the computation of the MUPS is presented. The Black-Box algorithm
basically tries to find the MUPS in a trial and error fashion, which requires a
high number of expensive reclassifications. In order to get all justifications the
authors calculate a first justification (MUPS) and afterwards use a variant of
the Hitting Set Algorithm [13] to obtain all other justifications for the unsatisfi-
ability. The goal of general ontology debugging approaches is: Given an ontology
with at least one unsatisfiable concept find a set of axioms that need to be re-
moved in order to obtain a coherent ontology. There can be multiple sets of such
axioms (also called diagnoses). Therefore, it is beneficial to rank the possible re-
pairs either by assuming that the set of removed axioms should be minimal [14]
or by selecting the diagnosis [4] that best fits the modeling intention by asking an
oracle/user. This is a major difference to the annotation maintenance scenario,
where the ontology cannot be changed by the annotator and only changes of the
the path expression are allowed. Therefore, we search especially for steps in the
path that lead to an error.
An alternative approach to debug ontologies are patterns/anti-patterns (in par-
ticular logically detectable anti-patterns) as proposed in [2, 1]. Those patterns
concentrate on common modeling errors that are made on ontology artifacts
such as concepts. They can provide well understandable explanations for com-
mon errors on simple concepts. Because the subject of such patterns is a concept
and not an annotation path their usefulness for annotation paths is limited to
simple cases.

7 Conclusion

Semantic annotation is an important technique for semantic processing of infor-
mation, in particular for interoperability of heterogeneous information systems.
Annotation paths are a declarative yet highly expressive way to describe the
semantics of artifacts like schemas or documents. We propose methods and al-
gorithms for the identification of deficits in annotation paths, which is based on
an in depth analysis of the possible causes for invalid annotations. We expect
that experts who annotate artifacts will be much more efficient, if the position
and the cause of errors in annotations paths is automatically determined. This
technique is also particulary useful for annotation maintenance as a consequence
of an evolution of the reference ontology as it not only identifies the annotations
which became logically invalid, but also narrows the inspection area to the short-
est possible path and gives indications on the causes of the invalidation in form
of invalidation types. The proposed algorithm and methods are built upon the
functionality usually provided by generic reasoners for OWL ontologies, so they
are not restricted to a specific reasoner or ontology management system.
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